
Delphi is an open development
environment, in that it has

interfaces to enable you to
integrate your own tools and
experts with it. This article will
focus on writing and integrating
new Experts with Delphi.

There are three kinds of experts:
project, form and standard. The
first two can be found in the Options
| Gallery dialog, while standard
experts are on the Help menu (like
the Database Form Expert).

Project and form experts can be
activated whenever you create a
new project or form (just like
project and form templates).
Standard experts generally do not
create a new project or form, but
just a new file, or unit. A project
expert develops an entire project
for you based on your specific pref-
erences. A form expert develops
custom forms that are added to
your current project.

These example experts are not
external tools that can be started
from Delphi, they actually commu-
nicate with Delphi and form an
integral part of the development

Writing Your Own Experts
by Bob Swart

environment. While this is not so
strange for the existing Delphi
experts (after all, they were devel-
oped and added by the same team
that developed Delphi in the first
place), it sounds intriguing at least
to know that we, too, can write a
Delphi expert that is able to com-
municate with Delphi in the same
way. Could we write an expert that
also opens files in the IDE, and can
start a new project from scratch?
Yes, all this is possible, and more,
as we will see shortly!

TIExpert
The major reason why everybody
thinks experts are difficult is
because they are not documented.
Not in the manuals or on-line Help,
that is. If you take a look at the
documentation and source code
on your hard disk, though, you’ll
find some important files and even
two example experts. The key
example files can be found in the
DELPHI\DOC subdirectory and are
EXPTINTF.PAS and TOOLINTF.PAS. The
first one shows how to derive and
register our own Expert, while the

second one shows how to use the
tool serviees of Delphi to make the
integration complete.

If we want to derive our own
expert, say TMyFirstExpert, we
have to derive it from the abstract
base class TIExpert, which has
seven abstract member functions
(GetStyle, GetName, GetComment,
GetGlyph, GetState, GetIDString
and GetMenuText) and one member
procedure (Execute).

My First Expert: TMy1stExp
Let’s have a closer look at our first
expert from Listing 1. Since
TIExpert is an abstract base class,
we need to override every function.
First of all, we need to specify the
style of the expert with the
GetStyle method that can return
one of three possible values:
esStandard to tell the IDE to treat
the interface to this expert as a
menu item on the Help menu,
esForm to tell the IDE to treat this
expert interface in a fashion similar
to form templates, or esProject to
tell the IDE to treat this interface in
a fashion similar to project

unit My1stexp;
interface
uses
 WinTypes, Dialogs, ExptIntf;
Type
 TMy1stExp = class(TIExpert)
 public
 function GetStyle: TExpertStyle; override; { Style }
 { Expert Strings }
 function GetName: string; override;
 function GetComment: string; override;
 function GetGlyph: HBITMAP; override;
 function GetState: TExpertState; override;
 function GetIDString: string; override;
 function GetMenuText: string; override;
 procedure Execute; override; { Launch the Expert }
 end;
 procedure Register;
implementation

function TMy1stExp.GetStyle: TExpertStyle;
begin
 Result := esStandard
end;

function TMy1stExp.GetName: String;
begin
 Result := ’My First Expert’
end;

function TMy1stExp.GetComment: String;
begin

 Result := ’’ { not needed for esStandard }
end;

function TMy1stExp.GetGlyph: HBITMAP;
begin
 Result := 0 { not needed for esStandard }
end;

function TMy1stExp.GetState: TExpertState;
begin
 Result := [esEnabled]
end;

function TMy1stExp.GetIDString: String;
begin
 Result := ’DrBob.MyFirstExpert’
end;

function TMy1stExp.GetMenuText: String;
begin
 Result := ’&My First Delphi Expert...’
end;

procedure TMy1stExp.Execute;
begin
 MessageDlg(’Hello World: My First Expert is alive!’,
 mtInformation, [mbOk], 0)
end;

procedure Register;
begin
 RegisterLibraryExpert(TMy1stExp.Create)
end;
end.

➤ Listing 1 Source Code for My First Expert (MY1STEXP.PAS)

September 1995 The Delphi Magazine 35

templates. For our TMy1stExp, a
standard type expert that shows a
MessageDlg to indicate it is alive, we
can use the esStandard style.

After we’ve set the style of the
expert, all we need to do is fill in the
other options accordingly. GetName
must return a unique descriptive
name identifying this expert, like
‘My First Expert’. If style is esForm
or esProject then GetComment
should return a short sentence
describing the function of this ex-
pert. Since the style is esStandard,
we can return an empty string. If
style is esForm or esProject then
GetGlyph should return a handle to
a bitmap to be displayed in the
form or project list boxes or
dialogs. This bitmap should have a
size of 60x40 pixels in 16 colours.
Again, since the style is esStandard,
we can return 0 here. If the style is
esStandard then GetState returning
esChecked will cause the menu to
display a checkmark. This function
is called each time the expert is
shown in a menu or listbox in order
to determine how it should be dis-
played. We just leave it esEnabled
for now. The GetIDString should be
unique to each expert. By
convention, the format of the string
is: CompanyName.ExpertFunction. If
the style is esStandard then
GetMenuText should return the
actual text to display for the menu
item, like ‘My First Delphi Expert’.
Since this function is called each
time the parent menu is pulled
down, it is even possible to provide
context sensitive text.

Finally, the Execute method is
called whenever this expert is
invoked via the menu, form gallery
dialog, or project gallery dialog.
The style will determine how the
expert was invoked. In this case, we
just call a MessageDlg in the Execute
method to indicate that the expert
is actually alive.

To install our first expert, all we
need to do is act like it’s a new
component: pick Options | Install
and add it to the list of installed
components. When Delphi is done
with compiling and linking
COMPLIB.DCL, you can find our
first new expert in the Help menu.
Just click on it and it will show that
it’s alive (see Figure 1).

And Now For Something
Completely Different...
Now that we’ve seen our first nice,
but useless, Delphi expert, it’s time
to move on to more serious
matters. I want to make a little side-
step to a subject that will make a
good example of a more serious
Delphi expert.

On the CompuServe DELPHI
forum, one of the queries that
comes up rather frequently is “How
do I write a DLL with Delphi?”. The
answer is not just that you need to
write the code starting with library
and so on, the answer also needs to
explain how to compile the source
for a DLL with Delphi. In their
wisdom, Borland made the Delphi
IDE only capable of compiling the
current project. If you just open a
single file with the source for the
DLL and press Ctrl-F9 to compile it,
you won’t get what you want. You
must actually open your DLL
source file as a project and then you
can compile your DLL. During this
process, Delphi will generate .OPT
and .RES files if these don’t already
exist. All things considered, I would
like something that enables me to
open a new or existing DLL source
file at once so I can compile it.

Speaking of DLLs, whenever I sit
down to write a DLL in Delphi (or
Borland Pascal, for that matter), I
pick up an old one to use as
skeleton. Mostly, I re-use the setup
for the ExitProc routine and the
exports settings. For this purpose,
I’ve written a DLL skeleton that can
be loaded every time I need it.
Considering the fact that some of
my friends also use this skeleton
for their new DLLs, I decided to
make it something truly re-usable:
a Delphi DLL Skeleton Generator
(see Figure 2).

As you can see, I’ve included the
key functionality all in one Form:
How do I write a Resource-only DLL?
How do I write my own WEP (the

same as ExitProc)? How do I export
routines from a DLL? All these
questions can be answered if you
just select the appropriate options
and click OK to generate the DLL
skeleton source code. A sample
skeleton DLL with all options
enabled, except BPW compatibility
(which does not include the
SysUtils unit and AddExitProc
routine but requires you to setup
the ExitProc chain by hand), can be
found in Listing 2.

Behind the OkButtonClick is the
source code generator that writes
the selected source code to file.
Now I want something like this
integrated into Delphi itself, so I
can generate a new Delphi DLL
Skeleton and open it as my new
project at the same time. In order
to make the DLL Skeleton Gener-
ator a Delphi expert, all we have to
do is connect our expert Execute
method with our DLL Skeleton
Generator Form, as in Listing 3.

So, whenever the expert is
executed, it will see if our DLL
Skeleton Generator Form already
exists (ie if the expert is already
being executed) and create it if it
doesn’t exists. It will then show the
form and give it the input focus.
The DLL Skeleton Generator Form
is then in control.

The Final Frontier...
Only one thing remains: the final
integration with the Delphi IDE. I
would like to be able open a new
project with the source of the
generated DLL Skeleton inside. For
this, we need to communicate with
the Delphi IDE itself. This is

➤ Figure 2
Delphi DLL Skeleton Generator

➤ Figure 1
My First Delphi Expert is alive!

36 The Delphi Magazine Issue 3

possible with the special
ToolServices that are provided
from Delphi to its experts. Like the
expert interface, the ToolServices
are not documented in the manual
or on-line help. The only place you
can find more information on this
is in the TOOLINTF.PAS file, again in
the DELPHI\DOC directory.

First of all, we need to check if
the ToolServices are available to
us. This is just a check to see if
ToolServices (a global variable
from the TOOLINTF unit) is not nil. If
ToolServices are available, we can
do several things. I would like to
close the current project, which
can be done with the function
ToolServices.CloseProject. Then, I
would like to open a new project,
with the generated DLL Skeleton
source file as the filename, which
can be done with the function
ToolServices.OpenProject.

The last part of the OkButtonClick
method of the DLL Skeleton Gener-
ator Form is therefore as shown in
Listing 4.

Simple, eh? That’s all we need to
communicate with Delphi and
write a truly integrated Delphi
standard expert.

Project Expert
The DLL Skeleton Generator Expert
is still a standard expert, only
accessible from the Help menu. I
would like to make it a project
expert, so we can select it when we
start a new project. To do this, we
have to derive the project expert
from the standard expert and over-
ride four methods. First of all, we
have to override GetStyle and
return esProject. Also, we need to
return a comment (this is not really
needed) and a bitmap to display
the expert in the Gallery.

Standard And Project?
Remember the Database Form
Expert? This can be found in the
Gallery as a form expert and in the
Help menu as a standard expert. It
seems to be both.

I would like to be able to use my
DLL Skeleton Generator Expert not
only as a standard expert but also
as a project expert. In that case I
have to modify the expert func-
tions from Listing 1 to include both

library MyDLL;
{ Generated by DLL Skeleton Expert (c) 1995 by Dr.Bob for The Delphi Magazine }
uses WinTypes, WinProcs, SysUtils;
{$R MyDLL.RES}
function Max(X,Y: Integer): Integer; export;
begin
 if X > Y then Max := X
 else Max := Y
end {Max};
procedure Swap(var X,Y: Integer); export;
var Z: Integer;
begin
 Z := X;
 X := Y;
 Y := Z
end {Swap};
exports max index 1,
 swap index 2;
procedure MyDLLExitProc; far;
begin
 { WEP & cleanup }
end;
begin
 AddExitProc(MyDLLExitProc);
end.

➤ Listing 2 Generated DLL skeleton source code

if ToolServices <> nil then begin
 { I’m an expert!! }
 if ToolServices.CloseProject then
 ToolServices.OpenProject(ExtractFileName(DLLName.Text)+’.PAS’)
end

➤ Listing 4

procedure TDLLSkExp.Execute;
begin
 if not Assigned(DLLSkeletonGenerator) then
 DLLSkeletonGenerator := TDLLSkeletonGenerator.Create(Application);
 DLLSkeletonGenerator.Show;
 DLLSkeletonGenerator.SetFocus
end;

➤ Listing 3

the esStandard and esProject styles
(the result is in Listing 5). Also,
GetIDString needs to return unique
ID strings for both the standard and
the project expert. Even though the
two are essentially the same, I need
to return two special IDs. If you
don’t, Delphi will just GPF when
you try to install the experts.
Which leads back to Rule #1 from
the Under Construction column:
always have a backup of

COMPLIB.DCL at hand when you
start to play with components and
experts.

Now, if we install the expert, as
before, we get both a standard
expert in the Help menu and the
project expert in the Gallery (see
Figure 3). If we enable the gallery
from the environment options, we
can generate and open a DLL
Skeleton source file every time we
start a new project.

➤ Figure 3
DLL Skeleton
Generator
installed ready
for use

September 1995 The Delphi Magazine 37

unit Dllskexp;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes,
 Graphics, Controls, Forms, Dialogs, Buttons, StdCtrls,
 ExptIntf, ToolIntf;
{ definition of class TDLLSKeletonGenerator is on disk}
Type
 TDLLSkeletonStandardExpert = class(TIExpert)
 public
 { Expert Style }
 function GetStyle: TExpertStyle; override;
 { Expert Strings }
 function GetIDString: string; override;
 function GetName: string; override;
 function GetComment: string; override;
 function GetGlyph: HBITMAP; override;
 function GetState: TExpertState; override;
 function GetMenuText: string; override;
 procedure Execute; override; { Launch the Expert }
 end;
 TDLLSkeletonProjectExpert =
 class(TDLLSkeletonStandardExpert)
 public
 { Expert Style }
 function GetStyle: TExpertStyle; override;
 { Expert Strings }
 function GetIDString: string; override;
 function GetComment: string; override;
 function GetGlyph: HBITMAP; override;
 end;
 procedure Register;

implementation
{$R *.DFM}
{ class TDLLSKeletonGeneratorm implementation is on disk}

function TDLLSkeletonStandardExpert.GetStyle:
 TExpertStyle;
begin
 Result := esStandard
end;

function TDLLSkeletonStandardExpert.GetIDString: String;
begin
 Result := ’DrBob.StandardDLLSkExp’
end;

function TDLLSkeletonStandardExpert.GetComment: String;
begin
 Result := ’’ { not needed for esStandard }
end;

function TDLLSkeletonStandardExpert.GetGlyph: HBITMAP;
begin
 Result := 0 { not needed for esStandard }
end;

function TDLLSkeletonStandardExpert.GetName: String;
begin
 Result := ’DLL Skeleton Generator’
end;

function TDLLSkeletonStandardExpert.GetState:
 TExpertState;
begin
 Result := [esEnabled]
end;

function TDLLSkeletonStandardExpert.GetMenuText: String;
begin
 Result := ’Dr.&Bob’’s DLL Skeleton Expert...’
end;

procedure TDLLSkeletonStandardExpert.Execute;
begin
 if not Assigned(DLLSkeletonGenerator) then
 DLLSkeletonGenerator :=
 TDLLSkeletonGenerator.Create(Application);
 DLLSkeletonGenerator.Show;
 DLLSkeletonGenerator.SetFocus
end;
{$R DLLSKEXP.RES}
Const DLLSKEXPBITMAP = 666; { Bitmap ID }

function TDLLSkeletonProjectExpert.GetStyle:
 TExpertStyle;
begin
 Result := esProject
end;

function TDLLSkeletonProjectExpert.GetIDString: String;
begin
 Result := ’DrBob.ProjectDLLSkExp’
end;

function TDLLSkeletonProjectExpert.GetComment: String;
begin
 Result := ’This Project Experts generates and opens ’+
 ’a DLL Skeleton Source File’#13+ ’DLL Skeleton ’+
 ’Expert (c) 1995 by Dr.Bob for The Delphi Magazine’;
end;

function TDLLSkeletonProjectExpert.GetGlyph: HBITMAP;
begin
 Result := LoadBitMap(HInstance,
 MakeIntResource(DLLSKEXPBITMAP))
end;

procedure Register;
begin
 RegisterLibraryExpert(
 TDLLSkeletonStandardExpert.Create);
 RegisterLibraryExpert(
 TDLLSkeletonProjectExpert.Create);
end;
end.

➤ Listing 5 DLL Skeleton Generator Standard and Project Expert

If we select the DLL Skeleton
Expert, we can then select the
required options (as in Figure 2). If
we click on OK, the expert closes
and we’re in our main project: the
generated source of the DLL.

Since the generated DLL source
code is opened as a new project, we
can instantly compile it by pressing
Ctrl-F9. And once you have a
skeleton DLL, it’s easy to build on
it and add your own functions.

Serious Business...
The example DLL Skeleton Gener-
ator Expert is included on the
subscribers’ disk with this issue.
You’ll also find another expert, the
one I wrote about in the last issue:

HeadConv. This solves a more
serious problem that many people
have: “How do I use this foreign DLL
written in C, as I only have the C
header file with it and no Delphi
import unit?” The answer is to
convert the C DLL header file to a
Delphi import unit. This is no
simple task, especially for large
header files, and my HeadConv C
DLL Header Converter Expert tries
to assist in this task by creating an
initial conversion from which to
start. For some headers, the initial
conversion is good enough, for
others extra work might be
needed. Specifically, the declara-
tion of nested structs and actual
code (as opposed to function

declarations) will be a source of
problems (pun intended).

I’ve decided to sell HeadConv as
a shareware tool. The version on
the disk is fully functional, but for
a registration fee of $25 you get a
more advanced version with
explicit import unit capabilities
and the source code of the expert
(but not of the parser). The
CompuServe SWREG forum regis-
tration ID is 6533). See the advert in
this issue for more details.

Bob Swart is a professional soft-
ware developer using Borland
Pascal, C++ and Delphi; email:
100434.2072@compuserve.com

38 The Delphi Magazine Issue 3

	TIExpert
	My First Expert
	And Now for Something Completely Different
	The Final Frontier
	Project Expert
	Standard and Project?
	Serious Business

